Reducing Greenhouse Gas Emissions from Light-Duty Motor Vehicles,

Interim Report, NESCCAF, March 2004

Indirect GHG Impacts of Vehicle Air Conditioning

ARB Climate Change Workshop April 20, 2004

Air Conditioning GHG Influences

- · Direct emissions -- leakage of refrigerant.
- Indirect emissions -- increased tailpipe CO₂.
 - Increased CO₂ due to air conditioning (A/C) system mass (engine works harder to carry the weight). Impacts accrue whether the system is on or off.
 - Increased CO₂ due to the power demands of the A/C system (engine works harder to provide A/C operating power). Impacts accrue only when A/C is on.

Meszler Engineering Services Page 3 April 20, 2004

Direct A/C Emissions

- NESCCAF report includes an analysis of direct A/C emissions.
- · ARB has performed an independent analysis that will be presented separately today.
- This presentation focuses on indirect A/C GHG emissions.

Meszler Engineering Services April 20, 2004

Mass-Related A/C GHG Impacts

• GHG contribution due to A/C system mass is generally small relative to leakage and operating power impacts. But, can be significant in low A/C usage areas with reduced GWP refrigerants.

A/C System	Without Secondary Loop			With Secondary Loop		
	CO ₂ Emission Rate (g/mi)	Lifetime CO ₂ Emissions (kg)	Change from Current HFC-134a	CO ₂ Emission Rate (g/mi)	Lifetime CO ₂ Emissions (kg)	Change from Current HFC-134a
Current HFC134a	1.7	249.6	Base	not applicable		
Enhanced HFC-134a	1.5	226.9	-9.1%	not applicable		
HFC-152a	1.5	226.9	-9.1%	1.9	287.4	+15.2%
Propane (R-290)	1.5	226.9	-9.1%	1.9	287.4	+15.2%
CO ₂ (R-744)	1.7	257.1	+3.0%	2.1	317.6	+27.3%

Meszler Engineering Services Page 5 April 20, 2004

Indirect GHG Due to Power Demand

- A/C cooling demand (and thus power demand) varies with climate (geography).
 - There is no absolute impact that applies across all areas.
- NESCCAF looked at low, high, and average demand areas via spreadsheet analysis and average demand via CRUISE simulation analysis.
 - Demand analysis limited to U.S. conditions and based on meteorological and thermal comfort analysis by Rugh and Hovland at NREL.

Meszler Engineering Services Page 6 April 20, 2004

Indirect GHG - Simulation Analysis

- Comprehensive results of NESCCAF A/C analysis (spreadsheet and simulation) are presented in the study report. However, in the interest of time, this presentation focuses on the CRUISE simulation analysis of A/C impacts.
- Simulation analysis investigated the indirect impacts of a baseline fixed displacement compressor (FDC) A/C system and the reduction benefits of a variable displacement compressor (VDC) system with advanced air management.

Meszler Engineering Services Page 7 April 20, 2004

Adjustment of Forrest Data (1)

- Forrest (Delphi) data were adjusted to produce class specific power demand curves for a baseline HFC-134a FDC system and an alternative HFC-152a VDC system with advanced air management.
- Delphi reduced reheat benefits were excluded as primarily applicable to automatic climate control vehicles.
 - Both baseline and alternative A/C systems assumed to be manual control.
- All curves established for U.S. average A/C usage conditions.

 Meszler Engineering Services
 Page 9
 April 20, 2004

Adjustment of Forrest Data (2)

- Both FDC and VDC power demand curves were scaled to account for vehicle class-specific compressor sizes as follows:
 - 150 cc for small car.
 - 170 cc for large car.
 - 210 cc for all truck classes.
- 5 percent reduction was applied to VDC demand curve to simulate efficiency benefits of HFC-152a.
- · AVL ran five simulations of FDC versus VDC impacts.

Meszler Engineering Services Page 10 April 20, 2004

Example Power Demand Curves

Page 11

Meszler Engineering Services

April 20, 2004

Simulation Modeling Results (1)

Meszler Engineering Services Page 12 April 20, 2004

A/C Impact Summary

- The indirect CO₂ impacts of HFC-134a FDC system are estimated to be 31.4 g/mi/100 cc compressor displacement.
 - $-\ 10.7$ g/mi/100 cc when adjusted for 34 percent A/C "on time."
- The indirect CO₂ impacts of HFC-152a VDC system are estimated to be 15.1 g/mi/100 cc compressor displacement.
 - 5.1 g/mi/100 cc when adjusted for 34 percent A/C "on time."
- The VDC system is estimated to reduce indirect A/C impacts by about 51 percent.

Meszler Engineering Services Page 15 April 20, 2004

